Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
1.
Commun Biol ; 7(1): 399, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565940

RESUMO

The occurrence of chemoresistance is an inescapable obstacle affecting the clinical efficacy of cisplatin in gastric cancer (GC). Exploring the regulatory mechanism of cisplatin resistance will help to provide potential effective targets for improving the prognosis of gastric cancer patients. Here, we find that FAM120A is upregulated in GC tissues and higher in cisplatin-resistant GC tissues, and its high expression is positively correlated with the poor outcome of GC patients. Functional studies indicate that FAM120A confers chemoresistance to GC cells by inhibiting ferroptosis. Mechanically, METTL3-induced m6A modification and YTHDC1-induced stability of FAM120A mRNA enhance FAM120A expression. FAM120A inhibits ferroptosis by binding SLC7A11 mRNA and enhancing its stability. FAM120A deficiency enhances cisplatin sensitivity by promoting ferroptosis in vivo. These results reveal the function of FAM120A in chemotherapy tolerance and targeting FAM120A is an effective strategy to alleviate cisplatin resistance in GC.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ferroptose/genética , Metiltransferases , RNA Mensageiro , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
2.
Front Immunol ; 15: 1308978, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571952

RESUMO

Objective: Acute myocardial infarction (AMI) is a severe cardiovascular disease that threatens human life and health globally. N6-methyladenosine (m6A) governs the fate of RNAs via m6A regulators. Nevertheless, how m6A regulators affect AMI remains to be deciphered. To solve this issue, an integrative analysis of m6A regulators in AMI was conducted. Methods: We acquired transcriptome profiles (GSE59867, GSE48060) of peripheral blood samples from AMI patients and healthy controls. Key m6A regulators were used for LASSO, and consensus clustering was conducted. Next, the m6A score was also computed. Immune cell infiltration, ferroptosis, and oxidative stress were evaluated. In-vitro and in-vivo experiments were conducted to verify the role of the m6A regulator ALKBH5 in AMI. Results: Most m6A regulators presented notable expression alterations in circulating cells of AMI patients versus those of controls. Based on key m6A regulators, we established a gene signature and a nomogram for AMI diagnosis and risk prediction. AMI patients were classified into three m6A clusters or gene clusters, respectively, and each cluster possessed the unique properties of m6A modification, immune cell infiltration, ferroptosis, and oxidative stress. Finally, the m6A score was utilized to quantify m6A modification patterns. Therapeutic targeting of ALKBH5 greatly alleviated apoptosis and intracellular ROS in H/R-induced H9C2 cells and NRCMs. Conclusion: Altogether, our findings highlight the clinical significance of m6A regulators in the diagnosis and risk prediction of AMI and indicate the critical roles of m6A modification in the regulation of immune cell infiltration, ferroptosis, and oxidative stress.


Assuntos
Ferroptose , Infarto do Miocárdio , Humanos , Relevância Clínica , Infarto do Miocárdio/genética , Apoptose/genética , Análise por Conglomerados , Ferroptose/genética
3.
Cell Death Dis ; 15(4): 239, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561331

RESUMO

The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.


Assuntos
Ferroptose , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Ferroptose/genética , MicroRNAs/genética , RNA Interferente Pequeno , Fatores de Transcrição Forkhead/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
4.
BMC Genomics ; 25(1): 352, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594623

RESUMO

BACKGROUND: Posterior capsular opacification (PCO) is the main reason affecting the long-term postoperative result of cataract patient, and it is well accepted that fibrotic PCO is driven by transforming growth factor beta (TGFß) signaling. Ferroptosis, closely related to various ocular diseases, but has not been explored in PCO. METHODS: RNA sequencing (RNA-seq) was performed on both TGF-ß2 treated and untreated primary lens epithelial cells (pLECs). Differentially expressed genes (DEGs) associated with ferroptosis were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to investigate their biological function. Additionally, protein-to-protein interactions among selected ferroptosis-related genes by PPI network and the top 10 genes with the highest score (MCC algorithm) were selected as the hub genes. The top 20 genes with significant fold change values were validated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Our analysis revealed 1253 DEGs between TGF-ß2 treated and untreated pLECs, uncovering 38 ferroptosis-related genes between two groups. Among these 38 ferroptosis-related genes,the most prominent GO enrichment analysis process involved in the response to oxidative stress (BPs), apical part of cell (CCs),antioxidant activity (MFs). KEGG were mainly concentrated in fluid shear stress and atherosclerosis, IL-17 and TNF signaling pathways, and validation of top 20 genes with significant fold change value were consistent with RNA-seq. CONCLUSIONS: Our RNA-Seq data identified 38 ferroptosis-related genes in TGF-ß2 treated and untreated pLECs, which is the first observation of ferroptosis related genes in primary human lens epithelial cells under TGF-ß2 stimulation.


Assuntos
Opacificação da Cápsula , Ferroptose , Humanos , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Ferroptose/genética , Western Blotting , Opacificação da Cápsula/genética , Opacificação da Cápsula/metabolismo , Células Epiteliais/metabolismo
5.
J Transl Med ; 22(1): 340, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594779

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS: In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS: This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS: Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Humanos , Ferroptose/genética , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Bioensaio , Bases de Dados Factuais , Ligante RANK
6.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598341

RESUMO

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/genética , Homozigoto , Deleção de Sequência , Peroxidação de Lipídeos , Homeostase , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
7.
BMC Cancer ; 24(1): 496, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637761

RESUMO

Ferroptosis has important value in cancer treatment. It is significant to explore the new ferroptosis-related lncRNAs prediction model in Hepatocellular carcinoma (HCC) and the potential molecular mechanism of ferroptosis-related lncRNAs. We constructed a prognostic multi-lncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HCC. qRT-PCR was applied to determine the expression of lncRNA in HCC cells. The biological roles of NRAV in vitro and in vivo were determined by performing a series of functional experiments. Furthermore, dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to confirm the interaction of NRAV with miR-375-3P. We identified 6 differently expressed lncRNAs associated with the prognosis of HCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HCC. Moreover, the AUC of the lncRNAs signature showed utility in predicting HCC prognosis. Further functional experiments show that the high expression of NRAV can strengthen the viciousness of HCC. Interestingly, we found that NRAV can enhance iron export and ferroptosis resistance. Further study showed that NRAV competitively binds to miR-375-3P and attenuates the inhibitory effect of miR-375-3P on SLC7A11, affecting the prognosis of patients with HCC. In conclusion, We developed a novel ferroptosis-related lncRNAs prognostic model with important predictive value for the prognosis of HCC. NRAV is important in ferroptosis induction through the miR-375-3P/SLC7A11 axis.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Ferroptose/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Prognóstico , Sistema y+ de Transporte de Aminoácidos/genética
8.
J Cancer Res Clin Oncol ; 150(4): 204, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642144

RESUMO

BACKGROUND: Emerging research has validated that circular RNAs (circRNAs) have indispensable regulatory functions in tumorigenesis, including colorectal cancer (CRC). Ferroptosis is a specific cell death form and implicates in the malignant progression of tumors. Here, this study aimed to investigate the biofunction of circ_0087851 in tumor progression and ferroptosis of CRC, as well as its underlying molecular mechanism. METHODS: The expression pattern of circ_0087851 in CRC was validated by qRT-PCR. The biological characteristics of circ_0087851 in CRC were assessed through CCK-8, colony formation and transwell assays in vitro. The ferroptosis was measured using ferroptosis-related reagents on iron, Fe2+, and lipid ROS detection. Bioinformatics, luciferase reporter, and RNA pulldown assays were employed to reveal the circ_0087851-mediated regulatory network. In addition, the effect of circ_0087851 on tumor growth in vivo was detected using a xenograft model. RESULTS: Circ_0087851 was notably diminished in CRC tissues and cells. Functionally, overexpression of circ_0087851 suppressed CRC cell growth, migration, invasion, and facilitated ferroptosis in vitro. Meanwhile, circ_0087851 upregulation impeded CRC growth in vivo. Mechanistically, circ_0087851 functioned as a molecular sponge for miR-593-3p, and BRCA1 associated protein 1 (BAP1) was identified as a downstream target of miR-593-3p. Besides, rescue experiments revealed that miR-593-3p overexpression or silencing of BAP1 reversed circ_0087851-mediated CRC progression. CONCLUSION: Circ_0087851 performed as a tumor suppressor and ferroptosis promoter by the miR-593-3p/BAP1 axis, providing novel biomarker and therapeutic target for the clinical management of CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , MicroRNAs , Humanos , Ferroptose/genética , Transformação Celular Neoplásica , Carcinogênese , Neoplasias Colorretais/genética , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase
9.
Cell Death Dis ; 15(4): 248, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575587

RESUMO

Gastric cancer (GC) contains subpopulations of cancer stem cells (CSCs), which are described as the main contributors in tumor initiation and metastasis. It is necessary to clarify the molecular mechanism underlying CSCs phenotype and develop novel biomarkers and therapeutic targets for gastric cancer. Here, we show that POLQ positively regulates stem cell-like characteristics of gastric cancer cells, knockdown of POLQ suppressed the stemness of GC cells in vitro and in vivo. Further mechanistic studies revealed that POLQ knockdown could downregulate the expression of dihydroorotate dehydrogenase (DHODH). DHODH overexpression rescued the reduced stemness resulted by POLQ knockdown. Furthermore, we found that POLQ expression correlated with resistance to ferroptosis, and POLQ inhibition renders gastric cancer cells more vulnerable to ferroptosis. Further investigation revealed that POLQ regulated DHODH expression via the transcription factors E2F4, thereby regulating ferroptosis resistance and stemness of gastric cancer cells. Given the importance of POLQ in stemness and ferroptosis resistance of GC, we further evaluated the therapeutic potential of POLQ inhibitor novobiocin, the results show that novobiocin attenuates the stemness of GC cells and increased ferroptosis sensitivity. Moreover, the combination of POLQ inhibitor and ferroptosis inducer synergistically suppressed MGC-803 xenograft tumor growth and diminished metastasis. Our results identify a POLQ-mediated stemness and ferroptosis defense mechanism and provide a new therapeutic strategy for gastric cancer.


Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Regulação para Baixo/genética , Ferroptose/genética , Novobiocina , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
10.
BMC Urol ; 24(1): 78, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575966

RESUMO

BACKGROUND: Few studies are focusing on the mechanism of erastin acts on prostate cancer (PCa) cells, and essential ferroptosis-related genes (FRGs) that can be PCa therapeutic targets are rarely known. METHODS: In this study, in vitro assays were performed and RNA-sequencing was used to measure the expression of differentially expressed genes (DEGs) in erastin-induced PCa cells. A series of bioinformatic analyses were applied to analyze the pathways and DEGs. RESULTS: Erastin inhibited the expression of SLC7A11 and cell survivability in LNCaP and PC3 cells. After treatment with erastin, the concentrations of malondialdehyde (MDA) and Fe2+ significantly increased, whereas the glutathione (GSH) and the oxidized glutathione (GSSG) significantly decreased in both cells. A total of 295 overlapping DEGs were identified under erastin exposure and significantly enriched in several pathways, including DNA replication and cell cycle. The percentage of LNCaP and PC3 cells in G1 phase was markedly increased in response to erastin treatment. For four hub FRGs, TMEFF2 was higher in PCa tissue and the expression levels of NRXN3, CLU, and UNC5B were lower in PCa tissue. The expression levels of SLC7A11 and cell survivability were inhibited after the knockdown of TMEFF2 in androgen-dependent cell lines (LNCaP and VCaP) but not in androgen-independent cell lines (PC3 and C4-2). The concentration of Fe2+ only significantly increased in TMEFF2 downregulated LNCaP and VCaP cells. CONCLUSION: TMEFF2 might be likely to develop into a potential ferroptosis target in PCa and this study extends our understanding of the molecular mechanism involved in erastin-affected PCa cells.


Assuntos
Ferroptose , Piperazinas , Neoplasias da Próstata , Masculino , Humanos , Androgênios , Ferroptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Próstata/metabolismo , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Netrina
11.
Immun Inflamm Dis ; 12(4): e1221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578040

RESUMO

BACKGROUND: Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by morphological abnormalities and peripheral blood cytopenias, carrying a risk of progression to acute myeloid leukemia. Although ferroptosis is a promising target for MDS treatment, the specific roles of ferroptosis-related genes (FRGs) in MDS diagnosis have not been elucidated. METHODS: MDS-related microarray data were obtained from the Gene Expression Omnibus database. A comprehensive analysis of FRG expression levels in patients with MDS and controls was conducted, followed by the use of multiple machine learning methods to establish prediction models. The predictive ability of the optimal model was evaluated using nomogram analysis and an external data set. Functional analysis was applied to explore the underlying mechanisms. The mRNA levels of the model genes were verified in MDS clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The extreme gradient boosting model demonstrated the best performance, leading to the identification of a panel of six signature genes: SREBF1, PTPN6, PARP9, MAP3K11, MDM4, and EZH2. Receiver operating characteristic curves indicated that the model exhibited high accuracy in predicting MDS diagnosis, with area under the curve values of 0.989 and 0.962 for the training and validation cohorts, respectively. Functional analysis revealed significant associations between these genes and the infiltrating immune cells. The expression levels of these genes were successfully verified in MDS clinical samples. CONCLUSION: Our study is the first to identify a novel model using FRGs to predict the risk of developing MDS. FRGs may be implicated in MDS pathogenesis through immune-related pathways. These findings highlight the intricate correlation between ferroptosis and MDS, offering insights that may aid in identifying potential therapeutic targets for this debilitating disorder.


Assuntos
60427 , Ferroptose , Síndromes Mielodisplásicas , Humanos , Ferroptose/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Bases de Dados Factuais , Aprendizado de Máquina , Proteínas Proto-Oncogênicas , Proteínas de Ciclo Celular
12.
J Obstet Gynaecol ; 44(1): 2321323, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38425023

RESUMO

BACKGROUND: This study aimed to investigate the potential role of ferroptosis/hypoxia-related genes in cervical cancer to improve early management and treatment of cervical cancer. METHODS: All data were downloaded from public databases. Ferroptosis/hypoxia-related genes associated with cervical cancer prognosis were selected to construct a risk score model. The relationship between risk score and clinical features, immune microenvironment and prognosis were analysed. RESULTS: Risk score model was constructed based on eight signature genes. Drug prediction analysis showed that bevacizumab and cisplatin were related to vascular endothelial growth factor A. Risk score, as an independent prognostic factor of cervical cancer, had a good survival prediction effect. The two groups differed significantly in degree of immune cell infiltration, gene expression, tumour mutation burden and somatic variation. CONCLUSIONS: We developed a novel prognostic gene signature combining ferroptosis/hypoxia-related genes, which provides new ideas for individual treatment of cervical cancer.


Ferroptosis, hypoxia and immune regulation play important roles in cervical cancer progression. In this study, we developed a novel prognostic signature combining ferroptosis and hypoxia-related genes, which provides new ideas for individual treatment of cervical cancer patients. The risk score established by ferroptosis and hypoxia-related gene as an independent prognostic factor of cervical cancer has a good survival prediction effect. High and low risk groups showed significant differences in TIME, prognosis, biological metabolic pathway and tumour mutation burden. In addition, we found drugs associated with signature genes. In short, this study has laid a theoretical foundation for exploring the related molecular mechanisms and prognosis of cervical cancer. It also contributes to the exploration of clinical management and treatment.


Assuntos
Ferroptose , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Fator A de Crescimento do Endotélio Vascular , Ferroptose/genética , Prognóstico , Hipóxia/genética , Hipóxia Fetal , Microambiente Tumoral/genética
13.
Int J Med Sci ; 21(4): 612-622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464828

RESUMO

Diabetic cardiomyopathy (DC) is a pathophysiologic condition caused by diabetes mellitus (DM) in the absence of coronary artery disease, valvular heart disease, and hypertension that can lead to heart failure (HF), manifesting itself in the early stages with left ventricular hypertrophy and diastolic dysfunction, with marked HF and decreased systolic function in the later stages. There is still a lack of direct evidence to prove the exact existence of DC. Ferroptosis is a novel form of cell death characterized by reactive oxygen species (ROS) accumulation and lipid peroxidation. Several cell and animal studies have shown that ferroptosis is closely related to DC progression. This review systematically summarizes the related pathogenic mechanisms of ferroptosis in DC, including the reduction of cardiac RDH10 induced ferroptosis in DC cardiomyocytes which mediated by retinol metabolism disorders; CD36 overexpression caused lipid deposition and decreased GPX4 expression in DC cardiomyocytes, leading to the development of ferroptosis; Nrf2 mediated iron overload and lipid peroxidation in DC cardiomyocytes and promoted ferroptosis; lncRNA-ZFAS1 as a ceRNA, combined with miR-150-5p to inhibit CCND2 expression in DC cardiomyocytes, thereby triggering ferroptosis.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Insuficiência Cardíaca , Animais , Cardiomiopatias Diabéticas/genética , Ferroptose/genética , Morte Celular , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Diabetes Mellitus/genética
14.
Cell Death Dis ; 15(3): 181, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429265

RESUMO

Emerging evidence highlights the multifaceted contributions of m6A modifications to glioma. IGF2BP3, a m6A modification reader protein, plays a crucial role in post-transcriptional gene regulation. Though several studies have identified IGF2BP3 as a poor prognostic marker in glioma, the underlying mechanism remains unclear. In this study, we demonstrated that IGF2BP3 knockdown is detrimental to cell growth and survival in glioma cells. Notably, we discovered that IGF2BP3 regulated ferroptosis by modulating the protein expression level of GPX4 through direct binding to a specific motif on GPX4 mRNA. Strikingly, the m6A modification at this motif was found to be critical for GPX4 mRNA stability and translation. Furthermore, IGF2BP3 knockdown glioma cells were incapable of forming tumors in a mouse xenograft model and were more susceptible to phagocytosis by microglia. Our findings shed light on an unrecognized regulatory function of IGF2BP3 in ferroptosis. The identification of a critical m6A site within the GPX4 transcript elucidates the significance of post-transcriptional control in ferroptosis.


Assuntos
Adenina , Adenosina , Ferroptose , Glioma , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Adenina/análogos & derivados , Adenosina/análogos & derivados , Modelos Animais de Doenças , Ferroptose/genética , Glioma/genética , Proteínas de Ligação a RNA/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
15.
Nat Commun ; 15(1): 2461, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504107

RESUMO

Targeting ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal overload of lipid peroxides, in cancer therapy is impeded by our limited understanding of the intersection of tumour's metabolic feature and ferroptosis vulnerability. In the present study, arginine is identified as a ferroptotic promoter using a metabolites library. This effect is mainly achieved through arginine's conversion to polyamines, which exerts their potent ferroptosis-promoting property in an H2O2-dependent manner. Notably, the expression of ornithine decarboxylase 1 (ODC1), the critical enzyme catalysing polyamine synthesis, is significantly activated by the ferroptosis signal--iron overload--through WNT/MYC signalling, as well as the subsequent elevated polyamine synthesis, thus forming a ferroptosis-iron overload-WNT/MYC-ODC1-polyamine-H2O2 positive feedback loop that amplifies ferroptosis. Meanwhile, we notice that ferroptotic cells release enhanced polyamine-containing extracellular vesicles into the microenvironment, thereby further sensitizing neighbouring cells to ferroptosis and accelerating the "spread" of ferroptosis in the tumour region. Besides, polyamine supplementation also sensitizes cancer cells or xenograft tumours to radiotherapy or chemotherapy through inducing ferroptosis. Considering that cancer cells are often characterized by elevated intracellular polyamine pools, our results indicate that polyamine metabolism exposes a targetable vulnerability to ferroptosis and represents an exciting opportunity for therapeutic strategies for cancer.


Assuntos
Ferroptose , Sobrecarga de Ferro , Neoplasias , Humanos , Poliaminas/metabolismo , Ferroptose/genética , Peróxido de Hidrogênio , Linhagem Celular Tumoral , Arginina , Neoplasias/genética
16.
Nutrients ; 16(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542784

RESUMO

Iron is an essential trace element in the human body. However, excess iron is harmful and may cause ferroptosis. The expression and role of microRNAs (miRNAs) in ferroptosis remain largely unknown. A model of ferroptosis induced by ferric ammonium citrate in HT-1080 cells was established in this study. The miRNAs expression profiles of the control and iron groups were obtained using small RNA sequencing and verified using qRT-PCR. A total of 1346 known miRNAs and 80 novel miRNAs were identified, including 12 up-regulated differentially expressed miRNAs (DE-miRNAs) and 16 down-regulated DE-miRNAs. SP1 was the most important upstream transcription factor regulating DE-miRNAs. The downstream target genes of DE-miRNAs were predicted based on miRDB, TargetScan, and miRBase databases, and 403 common target genes were screened. GO annotation and KEGG analysis revealed that the target genes were mainly involved in various biological processes and regulatory pathways, especially the MAPK signaling pathway and PI3K-Akt signaling pathway. Afterwards, a target genes network was constructed using STRING and Cytoscape, and the hub genes were compared with the ferroptosis database (FerrDb V2) to discover the hub genes related to ferroptosis. EGFR, GSK3B, PARP1, VCP, and SNCA were screened out. Furthermore, a DE-miRNAs-target genes network was constructed to explore key DE-miRNAs. hsa-miR-200c-3p, hsa-miR-26b-5p, and hsa-miR-7-5p were filtered out. Comprehensive bioinformatics analysis of miRNAs and its upstream and downstream regulation in ferroptosis in HT-1080 cells using small RNA sequencing is helpful for understanding the role of miRNAs in iron overload-related diseases and ferroptosis-targeted therapy for cancer.


Assuntos
Ferroptose , Fibrossarcoma , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinases/genética , Ferroptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Biologia Computacional , Ferro , Perfilação da Expressão Gênica
17.
Genet Test Mol Biomarkers ; 28(3): 100-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478802

RESUMO

Background: Ferroptosis is associated with tumor development; however, its contribution to radioresistant head and neck cancer (HNC) remains unclear. In this study, we used bioinformatics analysis and in vitro testing to explore ferroptosis-related genes associated with HNCs radiosensitivity. Materials and Methods: GSE9714, GSE90761, and The Cancer Genome Atlas (TCGA) datasets were searched to identify ferroptosis-related differentially expressed genes between radioresistant and radiosensitive HNCs or radiation-treated and nonradiation-treated HNCs. A protein-protein interaction analysis on identified hub genes was then performed. Receiver operating characteristic curves and Kaplan-Meier survival analysis were used to assess the diagnostic and prognostic potential of the hub genes. Cell counting kit-8, transwell assay, and flow cytometry were applied to examine the role of hub gene collagen type IV, alpha1 chain (COL4A1) on the proliferation, migration, invasion, and apoptosis of TU686 cells. Results: Hub genes MMP10, MMP1, COL4A1, IFI27, and INHBA showed diagnostic potential for HNC and were negatively correlated with overall survival and disease-free survival in the TCGA dataset. Also, IL-1B, IFI27, INHBA, and COL4A1 mRNA levels were significantly increased in TCGA patients with advanced clinical stages or receiving radiotherapy, whereas COL4A1, MMP10, and INHBA expressions were negatively correlated with immune infiltration. Furthermore, the knockdown of COL4A1 inhibited cell proliferation, migration, and invasion while promoting apoptosis in TU686 cells. Conclusion: Ferroptosis-related hub genes, such as COL4A1, are potential diagnostic and prognostic indicators as well as therapeutic targets for HNC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Metaloproteinase 10 da Matriz , Ferroptose/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Apoptose/genética , Proliferação de Células/genética
18.
Clin Transl Med ; 14(3): e1632, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38515278

RESUMO

INTRODUCTION: Despite considerable therapeutic advances in the last 20 years, metastatic cancers remain a major cause of death. We previously identified prominin-2 (PROM2) as a biomarker predictive of distant metastases and decreased survival, thus providing a promising bio-target. In this translational study, we set out to decipher the biological roles of PROM2 during the metastatic process and resistance to cell death, in particular for metastatic melanoma. METHODS AND RESULTS: Methods and results: We demonstrated that PROM2 overexpression was closely linked to an increased metastatic potential through the increase of epithelial-to-mesenchymal transition (EMT) marker expression and ferroptosis resistance. This was also found in renal cell carcinoma and triple negative breast cancer patient-derived xenograft models. Using an oligonucleotide anti-sense anti-PROM2, we efficaciously decreased PROM2 expression and prevented metastases in melanoma xenografts. We also demonstrated that PROM2 was implicated in an aggravation loop, contributing to increase the metastatic burden both in murine metastatic models and in patients with metastatic melanoma. The metastatic burden is closely linked to PROM2 expression through the expression of EMT markers and ferroptosis cell death resistance in a deterioration loop. CONCLUSION: Our results open the way for further studies using PROM2 as a bio-target in resort situations in human metastatic melanoma and also in other cancer types.


Assuntos
Ferroptose , Melanoma , Humanos , Animais , Camundongos , Ferroptose/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Glicoproteínas de Membrana
19.
Nat Commun ; 15(1): 2531, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514704

RESUMO

YEATS domain-containing protein GAS41 is a histone reader and oncogene. Here, through genome-wide CRISPR-Cas9 screenings, we identify GAS41 as a repressor of ferroptosis. GAS41 interacts with NRF2 and is critical for NRF2 to activate its targets such as SLC7A11 for modulating ferroptosis. By recognizing the H3K27-acetylation (H3K27-ac) marker, GAS41 is recruited to the SLC7A11 promoter, independent of NRF2 binding. By bridging the interaction between NRF2 and the H3K27-ac marker, GAS41 acts as an anchor for NRF2 on chromatin in a promoter-specific manner for transcriptional activation. Moreover, the GAS41-mediated effect on ferroptosis contributes to its oncogenic role in vivo. These data demonstrate that GAS41 is a target for modulating tumor growth through ferroptosis. Our study reveals a mechanism for GAS41-mediated regulation in transcription by anchoring NRF2 on chromatin, and provides a model in which the DNA binding activity on chromatin by transcriptional factors (NRF2) can be directly regulated by histone markers (H3K27-ac).


Assuntos
Ferroptose , Histonas , Histonas/metabolismo , Cromatina/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/genética , Oncogenes
20.
Redox Biol ; 71: 103118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490069

RESUMO

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Cistationina beta-Sintase/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Ferroptose/genética , Cistina , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...